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Abstract

The General Autorepressive Conditional Heteroskedastic (GARCH) model and 10 ordinary air quality monitoring stations in the cntire
air quality control district in Kaohsiung-Pingtung were used in this study. First, the factor analysis results within multivariate statistics
were employed to sclect the main factor that affects air pollution, namely, the photochemical pollution factor. The characteristics of the
GARCH model were discussed in terms of asymmetric volatility among the three air pollutants (PM;o, NO,, and O4) within the factor. In
addition, this study also combined the multiple lime scries model VARMA (o explore changes in the time series of the three air pollutants
and to discuss their predictability.

The results showed that, although the coefficient of the GARCH model was negative when cstimating the variancc cquation, the
condilional variance would always be positive after laking the logarithm. The results also suggested that the GARCH model was quite
capable of capturing the asymmetric volatility. In other words, if the condition that pollution factors might be subject to scasonal changes
or outliers generated by the human contamination is not considered, the GARCH model had very good ability to verify the results and
make predictions, regardless of whether it adopted any of the three risk concepts: normal distribution, t-distribution, and gencralized
error distribution. For example, under the trend of time series temporal and spatial distribution in various pollution concentrations of
photochemical factors, the optimal model VARMA(2,0,0)-GARCH(1,1) selected in lhis study was used lo conduct time scries
predictability after the verification procedure. Afier capturing the last 50 entries of data on O3 concentrations in the sequence, the results
showed that the predictability correlation (r) was 0.812, the predictability of NO, was 0.783 and the predictability of PM o was 0.759. It
can be learned from the results that under the sequence of the GARCH model with strong asymmelric volatility, the residual values of
these three scquences as white noise were quite evident, and there was also a high degree of correlation in predictability.

Keywords: the entive air quality control district in Kaohsiung-Pingung, GARCH model. asymmetric volatility, photochemical pollution facior

of Engle (1982) and Bollerslev (1986), the GIR model of Glosten
et al,, (1992), and the Exponential GARCH (EGARCH) model of
Nelson (1991). Multivariate extensions of GARCH models are
also available in the literature, such as the Constant Conditional
Correlation (CCC) GARCH model Bollerslev (1990) and Ali
(2013), Vector Autoregressive Moving  Average GARCH
(VARMA-GARCH) model of Ling and McAleer (2003), and
VARMA Asymmelric GARCH (VARMA-AGARCH) model of
Hoti ¢t al., (2002). de Veiga and McAleer (2004) presented that
the multivariate VARMA-GARCH model of Ling and McAlcer
(2003) and VARMA-AGARCH model of McAleer et al. (2008)
provided better volatility than the nested univartate model, namely
GARCH of Bollerslev (1986) and GJR of Glosten, ct al., (1992),
respectively. On the other hand, in order to capture the dynamics

1. Introduction

In recent years, Taiwan has witnessed an ever-increasing number
of lactories and cars/scooters. Although the cmission standards
have been tightened, the air quality in districts where pollution
sources are concentrated remains unlikely to enjoy significant
improvement, Therefore, it is necessary to promole (otal quantity
control strategics to [urther improve the air quality. The
Environmental Protection Administration (EPA) in Taiwan has
divided Taiwan into seven air quality districts: Northern Taiwan,
Hsinchu-Miaoh, Central Taiwan, Yunlin-Chiayi-Tainan,
Kaohsiung-Pingtung, Hualien-Taitung and Yilan. Also, thc EPA
announced the lotal control districts in stages based on demands.

Priority is given 1o the entire air quality control district in
Kaohsiung-Pingtung. For those districts thal do not meet the air
quality standards, their total amounts of emissions were reduced to
comply with the control of allowable increased limits on
pollutants  conducted in districts that meet the air quality
standards.

At present, three of the most popular models to capture the
time-varying volatility in financial time serics are the Generalised
Autorcgressive Conditional Heteroscedasticity (GARCH) model

of time-varying conditiona! correlation, recently development
model is gencralized autoregressive conditional  correlation
(GARCC) of McAleer et al. (2008).

In addition, by using the GARCH model, Maher (1997) [linds
that the time-varying inlerest rate sensitivity renders lests over
long periods inconclusive. To address the time-varying naturc of
the stock return generating process for banks, Song (1994)
employs an ARCH-type methodology. Elyasiani and Mansur
(2003) go further by employing an extended GARCH-M model,
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which includes an interest rate in the mean and interest ratc
volatility as an argument in the volatility of the bank stock return
gencrating process. Carlson et al. (2004) and Zhang (2005)
cmploy simulations Lo show that asset betas change over time in
response to historical investments underlaken by companies as
well as by changes in product market demand. They conclude that
the book-to-market effect is related to operating leverage while the
sizc effect relates to the relative riskiness of growth options (o
assets in place.

Based on this rcason, this study selected 10 automatic air
quality monitoring stations set up in the entire air quality control
district in Kaohsiung-Pingtung, Taiwan. Firstly, the factor analysis
within the multivariate statistical analysis was ermployed to sclect
the most evident air pollutant factor that affected the air quality in
the entire air quality control district in Kaohsiung-Pingtung,
namely the photochemical pollution factor. Given that there is
variability between air pollutants and that air pollutants have the
ability to fully control second moment messages, this study
adopted the VARMA-GARCH model to analyze the time-varying
wrend of individual air pollutants (parameters) among the relevant
factors. Also, the predictability of air pollution parameters over
time was verified. The results could immediately reflect the
corrclation between various air pollution parameters, and the
government could formulate the application and examination of
air quality models accordingly, along with the model simulation
for allowable increased limits, in order to provide a reference and
basis for the benefit of air quality improvement.

2. Experimental Method

2.1 The Selection of Air Quality Monitoring Stations

The entire air quality control district in Kaohsiung-Pingtung
selected in Lhis study mainly took 7 pollutants: sulfur dioxide
(S0O,), nitrogen dioxide (NO,), carbon monoxide (CO), particulate
matter with particle size below 10 microns (PM,g), ozone (O;),
lotal hydrocarbon compounds (THC) and methane (CH,) in the 10
ordinary air quality monitoring stations (including Meinong
Station, Nanzi Station, Cianjin Station, Renwu Station, Zuoying
Station, Xiaogang station, Daliao station and Linyuan station in
Kaohsiung City, and Pingung Station and Chaozhou Station in
Pingtung County) as the basis for an analysis. Also, a total of 303
entries of data on complete air pollutant monitoring between April
1, 2017 and April 30, 2018 were taken as the basis lor a model
analysis. The geographical location ot each air quality monitoring
station is shown in Figure 1.

2.2 General ARCH Model (GARCH)

According to the traditional ARMA model determination method,
Bollerslev (1986) generalized the moving average (MA) by
adding conditional variation of lag length to the ARCH model. As
such, the conditional variation of current lag length was not only
affected by the previous average squared residual ilems, bul also
the previous conditional variance, and thus became thc GARCH
model (Jiang, 2012).

2.3 ARMA-GARCH Model

The threshold GARCH model proposed by Glosten ct al. (1992)
included the threshold value in the GARCH model, making 0 the
boundary point of the previous residual sequence a,.;. In addition
lo rctaining its advantages (such as explaining the clustering of
fluctuations and describing the fat tail), GARCH further solved
the asymmetry of time sequences that ARCH could not explain.
The model is as follows:

0-12 = ao +(0.'| +7d1 )‘912—1 +ﬂ|0',2_| (])

2.4 Ljung-Box Sequence Test

It was necessary to test whether the residual items in the
regression model have scquence correlation before estimating the
ARCH and GARCH models. If the residual items have sequence
correlation, the squared residual items will be examined to sce if it
has an ARCH cffect. As such, it is very important to check if the
residual items have sequence correlation before estimating the
ARCH and GARCH models.

2.5 ARCH Effect Test

Before combining the ARCII and GARCH models for time
sequence, it is necessary (o go through the sleps of model testing
to confirm that the sequence residual items do not have a first
order correlation, i.e. white noisc; at his stage, the model is an
appropriate modcl. Secondly, the lest of squared residual items
will serve as a means of determining if the model has a(n)
(G)ARCH cffect. This study used the Q statistics proposed by
Ljung-Box to test whether the vesiduals have high order
autocorrelation. After the model is shown to have an ARCH effect,
it can then perform paramecter estimations of the repeated
nonlincar opcration.

3. Empirical Analysis and Discussion

3.1 An Analysis of the Basic Characteristics of

Photochemical Pollution Factors

The photochemical pollution factors in this study included three
air polhutants, NO,, O; and PM,,. Table 1 shows the basic
characteristics of these thrce air pollutants, including mean,
standard deviation, skewness, kurtosis, and the Jarque-Bera test
(Chen and Li, 1999). In terms of skewness, said air pollutants
skewed on the right (with positive skewness). NO, had the highest
skewness of 3.68, indicating a sudden incrcase in numerous
entries in this sequence. PM o only had a skewness of 0.86, and O,
1.03. The majn sources of air pollution in the entire air quality
control district in Kaohsiung-Pingtung, as suggested in this sludy,
were PMyg and O;. Therefore, the higher the concentrations of
PM;o and Oj the higher the degree of air pollution! The
concentrations of PMo and Os in this district were often high,
which oflen led to poor air quality, especially in the winter time.
Conscquently, they did not cxhibit evident skewness. As for O, it
was known from the original dala that it only had a high
concentration during some periods in winter and early spring, but
it did not contribute much to the deterioration of air quality in the
atmosphere. Therefore, it had higher skewness. In terms of
kurtosis, it was larger than the normal distribution coefficient for
said air pollutants (normal distribution was 3), showing that cach
scquence had the characteristics of scasonal time sequence. In
addition, through the Jarque-Bera test, said air pollutants were
greater than the critical value (the degree of freedom was 2, and

,’(02_052 =5.99) at the 5% significant level, which showed the

hypothesis of refusal of normal disiribution. Said air pollutants
had the property of thick-tailed distribution. In other words, the
concenlration of each sequence was indeed affected by seasonality,
and therefore had a different concentration value.

3.2 Ljung-Box Sequence Test for Photochemical
Pollution Factors

This study used the Ljung-Box test to conduct the sequence test of
pholochemical pollutant faclors, and the result is shown in Table 2.
Table 2 shows that the statistical values of L-B-Q(K) were all less
than the critical value, and they could not reject the null
hypothesis. This characleristic indicated that the residual items of
each sequence did not have sequence correlation, which complied
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with the white noise phenomenon. The model configuration was
quite appropriate.
3.3 ARCH Effect Test for Photochemical Pollution

Factors

If a sequence is to test whether the model has an ARCH cffect, the
LM (Lagrangian Multiplicr) stalistics can be used for verification.
The LM statistics is T R% where T is the number of samples and
R? is the coefficient of determination using OLS regression. T*
RZ%js the chi-square distribution with a degree of freedom P. When
the LM statistics of the model is significant, it mecans that the
sequence has an ARCH effect. Table 3 shows the slatistical results
conceming the three air pollutants within the photochemical
pollution factors. The results showed that the conditional
variations of said air pollutants all had a strong ARCH effect (that
is, all TxR? valucs were significant at a 5% significant level).
Therefore, it is appropriate to use the ARCH effect lo explain
photochemical pollution factors.

3.4 Photochemical Pollution Factor Model Simulation
Results

To select the best matching model, this study used veclor model
EACF and GARCH lo choosc diffcrent combination tests. A
VARMA(p,d,q)-GARCH(p.q) model was combined, and used to
test the most suitable one, in order to conduct a simulation
analysis. Through the results obtained from tens of tests, Tablc 4
shows the optimal parameter estimation for
VARMA(2,0,0)-GARCH(1,1).

From the simulation results in Table 4, it can be observed that
when the cumrent PM), concentration was generated, the
concentration of Oy produced in the current period could not be
dircetly cstimated from the concentration of PM  (t-statistic of b0
is 1.39, <1.96, not significant). However, the concentration of
PM,y in one time lag and two times lag could affect the generation
of O; concentralion in the current period (the t-statistic of b, and
b, were 3.08 and 2.54, respectively, and >1.96, which is
significant). In terms of NOy, the current NO, concentration could
not estimate the current O3 concentralion from its current
concentration (the t-statistic of cowas 0.41, <1.96, not significant).
However, the NO, concentration of one time lag could affect the
current generation of Oj concentration (the t-statistic ol ¢; was
3.50, >1.96, significant), while the two times lag became
insignificant again (t-statistic of c¢; was 1.13, <1.96, not
significant). Tt could be learned from the above analysis that the
current Oy concentration would be affected by the PM;q one time
lag and two limes lag, as well as the NO, one time lag. It could be
explained that when the concentrations of PM)o and NO, in the
atmosphere were gencrated, these pollutants did not immediately
produce a photochemical reaction when spreading into the air
(Chen and Li, 1999). Instead, they would generatc a
photochemical reaction with sunlight during the onc lime lag or
even the two times lag, resulting in a photochemical product Oj.
Morcover, since PM,o could remain longer in the atmosphere
(Chou, 2010), O; could still be generaled due to photochemical
reactions after the two times lag. Consequently, it could be learned
that there was at leasl one time lag or even two limes lag during
the photochemical reactions and the gencration of pollulants. In
other words, the PM,, concentration in the one time lag and two
times lag could affect the generation of cuirent Os, and the NO,
concentration in the one time lag could affect the generation of
current Os. In terms of O3 concentration, it was also significantly
affected by its own one time lag (the t-statistic of a; was 3.75,
>1.96, significant), but not significantly affected by the two limes
lag (the t-statistic of a, was -0.37, <1.96, not significant). This
result could be explained in that the current O; concentration
would be affected by the one time lag concentration itself, but less
alfected by the two times lag itself.

3.5 VARMA(2,0,0)-GARCH(1,1) Mode]l Time Sequence
Predictability Results

Based on the three air pollution parameters of the photochemical
pollution factors, this study wused the oplimal model,
VARMA(2,0,0)-GARCH(1,1), to predict the Jast 50 entries of data
on three air pollutants, and the results are shown in Figures 2-4.
The results showed that the predictability correlation (r) of O; is
0.812, that of NO, is 0.783, and that of PM,, is 0.759. The
corrclation coefficient of these three entries of predictability is at
least greater than 0.75. As such, since the GARCH model is quite
evident in terms of the asymmetric volatility phenomenon and the
interpretation of the fluctuation clustering, it is quite capable of
making predictions.

4. Conclusion

the conditional heteroskedasticity model is an cxtremely cflective
tool for a time sequence analysis. When discussing air pollution,
no matter if it is photochemical pollution factor or fuel factor, an
ARCH and GARCH ecffect exists because each air pollution
variable tends to change with the seasons. When the former period
had great (small) changes, the current one would change
accordingly.

The GARCH model adopted for this study is quite capable of
capturing the asymmetric volatility. In other words, if the
condition that pollution factors might be subject to seasonal
changes or outliers generated by the human contamination is not
considered, the GARCH modcl had very good ability to verify the
results and make predictions, regardless of whether it adopted any
of the three risk concepts: normal distribution, t-distribution, and
generalized error distribution; such can be fully scen from the
analysis results in  Chapter 3. With the wuse of
VARMA(2,0,0)-GARCH(1,1) to simulate the three air pollutant
parameters among the photochemical pollution factors in the
entire air quality control district in Kaohsiung-Pingtung, the
results showed that the current O, concentration would be affected
by the one time lag and two times lag of PM,, as well as the one
time lag of NO,, which meant that the concentrations of PM 4 and
NO, from the previous period would affect the concentration of
current O;. This result could be explained in that when pollutants
produced PM,, and NO,, they would not immediately produce
photochemical oxidation when spreading into the atmosphere, but
would produce Oj in the next period due to their interaction with
sunlight. The PM, could stay even Jonger in the atmosphere and
producc ozone due to photochemical effects after two times lag.
Therefore, the photochemical reaction and the time of pollutant
generation have at least one time lag.
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Table 1 Basic Characteristics of Photochemical Pollution Factors

PM, Oy NO,
Mecan 110.928735 43.984532 76.038430
Median 107.400000 39.600000 73.040000
Maximum 509.100000 227.500000 511.037495
Minimum 22.800000 9.600000 20.180000
Sid. Dev. 0.799028 0.903849 0.304678
Skewness 0.867267 1.032892 3.684204
Kurtosis 4.281771 10.530963 15.920375
Jarque-Bera 727287394 3037.204 1015.686
Probability 0.000000 0.000000 0.000000
Sum 1283.400 267.0000 117.0990
Sum Sq. Dev. 165.289345 175.936212 72,735449
Observations 303 303 303
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Table 2 Ljung-Box Scquence Test for Photochemical Pollution Factors

L-BQ(K) PMo 0, NO, Critical value

.2
*(0.054)

1 127 2.04 2.64 3.84

2 3.09 4.03 449 5.99

3 6.0 5.83 6.06 7.82

4 7.00 7.08 8.28 9.49

5. 10.28.. 9.8 10.23 : 11.07

6 11.44 10.06 11.04 12:59

7 13.25 12.72 12.58 14.07

8 14.23 13.55 13.83 1551 -

9 1562 14.71 14.42 1692 "

10 16.77 15.58 16.14 18.31

16 21.98 22.74 23.65 26.30

20 26.65 27.90 28.57 3141

24 32.04 . 33.76 34.53 36.42, -

Note : R=c+ eR..lﬂ:. 1 a=0.05

Table 3 Photochemical Pollution Factor ARCH(g) Effect Verification

Q PMo 0, NO, Critical value
(lagged variables) (TRY) (TR?) (TRY 2
. X(0.05,%)
1 401.28 5.75 87.74 3.84
2 438.03 7.11 104.89 5.99
3 472.09 9.12 107.93 7.82
4 524.30 16.66 132.17 9.49
5 550.21 20.08 143.32 11.07
6 572.24 21.77 150.07 12.59
7 583.46 23.85 155.98 14.07
8 592.80 27.06 167.31 15.51
9 604.07 31.45 173.46 16.92
10 615.23 36.77 186.38 - 19.68
Note: All TR® values are less than 5% indicating “significance”
Table 4 Parameter Estimation of Photochemical Pollution Factors Vector Model with GARCLH(].1) Process
Ay iy a2 by by ba Cy € € d Uy ay az B
VARMA(1,0,0) 1.61 0.89 0.07 0.13 0.20 0.57 309 037 0.35 0.57
t-statistic 473 1.94 3:94 0:20 -1.28  0.89 506 306  -0:87 1:48:
VARMA(1,1,1) 1.91 0.45 -0.09 025 1.56 3.06 0.4 1.09  -0.62 4.12  0.04 0.33 0.56
t-statistic 0.57 -2.08 0.17 509 -0.20  5.09 1.99 2.94 2,05 694 238 1.09 -3.11
VARMA(0,0,1) 1.55 0.30 0.34 0.56 407 250 -0.54 0.58
t-statistic 0.39 0.49 -0.03 3.06 594 606 -3.94 2.96
VARMA(2,0,1} 3.55 1.22 0.28 0.33 0.04 203 -0.08  4.03 1.0s  -1.94 1.09
t-statistic 10.46 -3.46 5.03 1.06 1.56 155 3.57 1.04 1.07 0.90 -0.88
VARMA(2,0,0) 233 285 -L12 019 164 030 -1.32 047 048 504 183 050 136
t-statistic 5.56 3.75 -0.37 1.39 3.08 2.54 0.41 3.50 1.13 9.98 4.05 -3.94 3.06

2 2
Or=ast21 O3t 2:0500.27tboPM oyt b I PM iy 02PMiguayt coNOziyt € NO2it NOapaptdien himaoton €+ &, +Bihw
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